Truncated 5-orthoplex


5-orthoplex

Truncated 5-orthoplex

Bitruncated 5-orthoplex

5-cube

Truncated 5-cube

Bitruncated 5-cube
Orthogonal projections in BC5 Coxeter plane

In six-dimensional geometry, a truncated 5-orthoplex is a convex uniform 5-polytope, being a truncation of the regular 5-orthoplex.

There are 4 unique truncations of the 5-orthoplex. Vertices of the truncation 5-orthoplex are located as pairs on the edge of the 5-orthoplex. Vertices of the bitruncated 5-orthoplex are located on the triangular faces of the 5-orthoplex. The third and fourth truncations are more easily constructed as second and first truncations of the 5-cube.

Contents


Truncated 5-orthoplex

Truncated 5-orthoplex
Type uniform polyteron
Schläfli symbol t0,1{3,3,3,4}
t0,1{3,31,1}
Coxeter-Dynkin diagrams
4-faces 42
Cells 240
Faces 400
Edges 280
Vertices 80
Vertex figure
Elongated octahedral pyramid
Coxeter groups BC5, [3,3,3,4]
D5, [32,1,1]
Properties convex

Alternate names

Coordinates

Cartesian coordinates for the vertices of a truncated 5-orthoplex, centered at the origin, are all 80 vertices are sign (4) and coordinate (20) permutations of

(±2,±1,0,0,0)

Images

The trunacted 5-orthoplex is constructed by a truncation operation applied to the 5-orthoplex. All edges are shortened, and two new vertices are added on each original edge.

orthographic projections
Coxeter plane B5 B4 / D5 B3 / D4 / A2
Graph
Dihedral symmetry [10] [8] [6]
Coxeter plane B2 A3
Graph
Dihedral symmetry [4] [4]

Bitruncated 5-orthoplex

Bitruncated 5-orthoplex
Type uniform polyteron
Schläfli symbol t1,2{3,3,3,4}
t1,2{3,31,1}
Coxeter-Dynkin diagrams
4-faces 42
Cells 280
Faces 720
Edges 800
Vertices 320
Vertex figure
Coxeter groups BC5, [3,3,3,4]
D5, [32,1,1]
Properties convex

Alternate names

Coordinates

Cartesian coordinates for the vertices of a truncated 5-orthoplex, centered at the origin, are all 80 vertices are sign and coordinate permutations of

(±2,±2,±1,0,0)

Images

The bitrunacted 5-orthoplex is constructed by a bitruncation operation applied to the 5-orthoplex. All edges are shortened, and two new vertices are added on each original edge.

orthographic projections
Coxeter plane B5 B4 / D5 B3 / D4 / A2
Graph
Dihedral symmetry [10] [8] [6]
Coxeter plane B2 A3
Graph
Dihedral symmetry [4] [4]

Related polytopes

This polytope is one of 31 uniform polytera generated from the regular 5-cube or 5-orthoplex.


β5

t1β5

t2γ5

t1γ5

γ5

t0,1β5

t0,2β5

t1,2β5

t0,3β5

t1,3γ5

t1,2γ5

t0,4γ5

t0,3γ5

t0,2γ5

t0,1γ5

t0,1,2β5

t0,1,3β5

t0,2,3β5

t1,2,3γ5

t0,1,4β5

t0,2,4γ5

t0,2,3γ5

t0,1,4γ5

t0,1,3γ5

t0,1,2γ5

t0,1,2,3β5

t0,1,2,4β5

t0,1,3,4γ5

t0,1,2,4γ5

t0,1,2,3γ5

t0,1,2,3,4γ5

Notes

  1. ^ Klitzing, (x3x3o3o4o - tot)
  2. ^ Klitzing, (x3x3x3o4o - gart)

References

External links